Low cost microfluidic cell culture array using normally closed valves for cytotoxicity assay.
نویسندگان
چکیده
A reusable low cost microfluidic cell culture array device (MCCAD) integrated with a six output concentration gradient generator (cGG) and 4×6 arrays of microchamber elements, addressed by a series of row and columnar pneumatically actuated normally closed (NC) microvalves was fabricated for cell-based screening of chemotherapeutic compounds. The poly(dimethylsiloxane) (PDMS) device consists of three layers: fluidic, control and membrane which are held by surface contact and made leak-proof by clamping pressure. The NC valves are actuated by a thick PDMS membrane that was created by a novel method based on the self-assembly of PDMS pre-polymer molecules over a denser calcium chloride solution. The membrane actuated the valves reliably and particulates such as alumina particles (3 µm) and MCF-7 cells (20-24 µm) (2×10(5) cells/mL) were flowed through the valves without causing blockage or leakage and consequently avoiding contamination of the different cell culture elements. The MCCAD was cast and assembled in a standard laboratory without specialist equipment and demonstrated for performing quantitative cell-based cytotoxicity assays of pyocyanine on human breast cancer (MCF-7) cells and assessed for toxic effect on human hepatocyte carcinoma (HepG2) cells as an indicator for liver injury. Then, the MCCAD was demonstrated for sequential drug combinatorial screening involving gradient generation of paclitaxel doses followed by treatment with aspirin doses on the viability of MCF-7 cells. The interaction between paclitaxel and aspirin was evaluated by using the Bliss independence predictive model and results showed reasonable agreement with the model. A robust, portable, easily fabricated and low cost device is therefore shown to conveniently carry out culturing of multiple cell lines for high throughput screening of anti-cancer compounds using minimal reagents.
منابع مشابه
High-density microfluidic arrays for cell cytotoxicity analysis.
In this paper, we report on the development of a multilayer elastomeric microfluidic array platform for the high-throughput cell cytotoxicity screening of mammalian cell lines. Microfluidic channels in the platform for cell seeding are orthogonal to channels for toxin exposure, and within each channel intersection is a circular chamber with cell-trapping sieves. Integrated, pneumatically-actuat...
متن کاملDevelopment and multiplexed control of latching pneumatic valves using microfluidic logical structures.
Novel latching microfluidic valve structures are developed, characterized, and controlled independently using an on-chip pneumatic demultiplexer. These structures are based on pneumatic monolithic membrane valves and depend upon their normally-closed nature. Latching valves consisting of both three- and four-valve circuits are demonstrated. Vacuum or pressure pulses as short as 120 ms are adequ...
متن کاملCytotoxicity of quantum dots assay on a microfluidic 3D-culture device based on modeling diffusion process between blood vessels and tissues.
In this work, a novel quantum dot (QD) cytotoxicity assay platform on a microfluidic three-dimensional (3D) culture device via imitating the diffusion process between blood vessels and tissues was developed. The device is composed of a main channel and two sets of cell culture chambers. The cell culture chambers were located at different distances from the main channel and were divided into "cl...
متن کاملMagnetic timing valves for fluid control in paper-based microfluidics.
Multi-step analytical tests, such as an enzyme-linked immunosorbent assay (ELISA), require delivery of multiple fluids into a reaction zone and counting the incubation time at different steps. This paper presents a new type of paper-based magnetic valves that can count the time and turn on or off a fluidic flow accordingly, enabling timed fluid control in paper-based microfluidics. The timing c...
متن کاملA novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays.
In this work a novel microfluidic platform for cell culture and assay is developed. On the chip a static cell culture region is coupled with dynamic fluidic nutrition supply structures. The cell culture unit has a sandwich structure with liquid channels on the top, the cell culture reservoir in the middle and gas channels on the bottom. Samples can be easily loaded into the reservoir and exchan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Talanta
دوره 129 شماره
صفحات -
تاریخ انتشار 2014